Solution

1. Constants for TE effect

We need \(S \Delta T = \Delta V \)

\(T \) is associated with energy as \(q \) is \(V \). To get energy from \(T \):

\[k_b T \]

To get energy from \(V \):

\[eV \]

\[S \times \frac{k_b}{e} = \frac{1.38 \times 10^{-23}}{1.6 \times 10^{-19}} \approx 100 \text{V/k} \]
From Wikipedia:

<table>
<thead>
<tr>
<th>Material</th>
<th>Seebeck coefficient relative to platinum (μV/K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selenium</td>
<td>900</td>
</tr>
<tr>
<td>Tellurium</td>
<td>500</td>
</tr>
<tr>
<td>Silicon</td>
<td>440</td>
</tr>
<tr>
<td>Germanium</td>
<td>330</td>
</tr>
<tr>
<td>Antimony</td>
<td>47</td>
</tr>
<tr>
<td>Nichrome</td>
<td>25</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>10</td>
</tr>
<tr>
<td>Cadmium, tungsten</td>
<td>7.5</td>
</tr>
<tr>
<td>Gold, silver, copper</td>
<td>6.5</td>
</tr>
<tr>
<td>Rhodium</td>
<td>6.0</td>
</tr>
<tr>
<td>Tantalum</td>
<td>4.5</td>
</tr>
<tr>
<td>Lead</td>
<td>4.0</td>
</tr>
<tr>
<td>Aluminium</td>
<td>3.5</td>
</tr>
<tr>
<td>Carbon</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Also:

- SiGe: $S = 300 \mu \text{V}$ at $T \sim 1000 \text{ K}$
- Bi_2Te_3, (Bi_2Se_3): $S \sim 100 \mu \text{V}$
 - $\sigma \sim 10^5 \frac{1}{\Omega \text{m}}$
 - $\kappa \sim 12 \text{W/m.K}$
 - Melting: 850 K.
How to operate?

Current:

\[I = \frac{V}{r+R} \]

Voltage on load:

\[V_R = I \cdot R = \frac{VR}{r+R} \]

Power at load:

\[P = I^2 R = \frac{V^2 R}{(r+R)^2} \]

Maximum power:

\[\Theta = \frac{\partial P}{\partial R} = \frac{V^2}{(r+R)^2} - \frac{V^2 R}{(r+R)^3} \cdot \frac{2}{2} \]

\[= \frac{V^2}{(r+R)^3} \left(r+R - 2R \right) = 0 \]
\[r = R \]

\[\rho = \frac{1}{4} \left(\frac{V^2}{r} \right) = \frac{1}{4} \left(\frac{(S\Delta T)^2}{L/\sigma A} \right) \]

\(\sigma \) - conductivity

\(A \) - cross section area.

\(L \) - length.

\[r = \frac{L}{\sigma A} \] - resistance of TE.
Negative Seebeck?

<table>
<thead>
<tr>
<th>Metals</th>
<th>Seebeck Coefficient</th>
<th>Metals</th>
<th>Seebeck Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimony</td>
<td>47</td>
<td>Se</td>
<td>900</td>
</tr>
<tr>
<td>Nichrome</td>
<td>25</td>
<td>Te</td>
<td>500</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>10</td>
<td>Si</td>
<td>440</td>
</tr>
<tr>
<td>Cadmium</td>
<td>7.5</td>
<td>Ge</td>
<td>300</td>
</tr>
<tr>
<td>Tungsten</td>
<td>7.5</td>
<td>n-type Bi₂Te₃</td>
<td>-230</td>
</tr>
<tr>
<td>Gold</td>
<td>6.5</td>
<td>p-type Bi₂Sb₂Te₅</td>
<td>300</td>
</tr>
<tr>
<td>Silver</td>
<td>6.5</td>
<td>p-type Sb₂Te₃</td>
<td>185</td>
</tr>
<tr>
<td>Copper</td>
<td>6.5</td>
<td>PbTe</td>
<td>-180</td>
</tr>
<tr>
<td>Rhodium</td>
<td>6.0</td>
<td>PbₓGeₓSeᵧ</td>
<td>1670</td>
</tr>
<tr>
<td>Tantalum</td>
<td>4.5</td>
<td>PbₓGeₓSᵧSeᵧ</td>
<td>1410</td>
</tr>
<tr>
<td>Lead</td>
<td>4.0</td>
<td>PbₓGeₓSeᵧ</td>
<td>-1360</td>
</tr>
<tr>
<td>Aluminum</td>
<td>3.5</td>
<td>PbₓGeₓSₓSeₓ</td>
<td>-1710</td>
</tr>
<tr>
<td>Carbon</td>
<td>3.0</td>
<td>PbₓGeₓTeₓ</td>
<td>-1990</td>
</tr>
<tr>
<td>Mercury</td>
<td>0.6</td>
<td>SnSbₓTeᵧ</td>
<td>25</td>
</tr>
<tr>
<td>Platinum</td>
<td>0</td>
<td>SnBₓTeᵧ</td>
<td>120</td>
</tr>
<tr>
<td>Sodium</td>
<td>-2.0</td>
<td>SnBₓSbₓTeᵧ</td>
<td>151</td>
</tr>
<tr>
<td>Potassium</td>
<td>-9.0</td>
<td>SnBₓSbₓTeₓ₅</td>
<td>110</td>
</tr>
<tr>
<td>Nickel</td>
<td>-1.5</td>
<td>SnBₓSbₓTeₓ₇</td>
<td>90</td>
</tr>
<tr>
<td>Constantan</td>
<td>-35</td>
<td>PbBₓTeₓ</td>
<td>-53</td>
</tr>
<tr>
<td>Bismuth</td>
<td>-72</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thoughts:

Imagine a gas of particles:

\[E = n k_B T \]

\[n = \frac{N}{V} = \text{density} \]
So for \(N = \text{constant} \):

\[\dot{Q} \propto T \]

Particles move from high to low pressure.

Also, particles carry heat with them.

Electrical current:

\[I = \frac{\delta A}{\delta t} \]

Heat current:

\[\dot{Q} = k \frac{A}{L} \Delta T \]

Particle current:

\[N \sim \frac{\dot{Q}}{e} \sim R \frac{A}{L} \frac{\Delta T}{k_B T} \]

\[G = k_B T \sim \text{energy per particle} \]

Now:

\[I = q \cdot \dot{N} \]

\(q \) - particle's charge.
So:
\[\frac{A}{L} \cdot V = 9 \cdot \frac{1}{k_B T} \cdot \frac{kA}{L} \Delta T \]

And:
\[\frac{V}{\Delta T} = \frac{k}{6} \frac{1}{k_B T} \]

\(k \), \(\delta \) always positive.

Sodbeck sign = sign \((9)\)

for holes:

\[g = -e \]

(minus electron charge)

Also mentioned: Wiedemann-Franz Law

if \[\frac{V}{\Delta T} \frac{k_B}{q} \sim \frac{k}{6} \frac{1}{k_B T} \]

then:
\[\frac{G_T}{L^2} = \frac{q^2}{k_B^2} \cdot \frac{3}{4 \pi^2} \] (true in metals)
Meaning of "Couple"

Actual devices look like this:

Schematic of a Thermoelectric Cooler

Wires leading to load.

Effective circuit:

\[
\begin{align*}
S & \text{ gap} \\
\text{circuit} & \text{gap} \\
S & \text{ gap} \\
\text{load} &
\end{align*}
\]

(assume \(S = 15 \Omega \) = \(S \))
II. Pu heat production: \((^{238}_{92}PuO_2)\)

\[Q = 500 \text{ W/kg} \]

Radiated heat:

\[P = \sigma_\text{SB} A T^4 \]

Stefan-Boltzmann Constant

\[\sigma_{SB} = 5.67 \times 10^{-8} \text{ W/m}^2 \text{ K}^4 \]

\[\left[\text{proof of SE superiority!} \right] \]
Assume a sphere of mass
\[M = 0.5 \text{kg} \] (As turns out to be the case in Cassini)

radius:
\[0.5 \text{kg} = \frac{4}{3} \pi r^3 \cdot 10^{-4} \text{ kg/m}^3 \]

\[r = \left(10^{-4} \cdot \frac{1}{8} \text{ m}^3\right)^{1/3} \]

\[= \left(12 \cdot 10^{-6}\right)^{1/3} = 0.023 \text{ m} \]

\[= 2.3 \text{ cm} \] (A bit bigger than our discussion in class)

Black body equilibrium

radiation coming out:

\[\sigma A T^4 \]

radioactivity released heat

\[\rho \frac{4 \pi r^3}{3} \]
Putting in $A = \pi r^2$:

$$\beta \frac{\pi}{3} r = 65B \cdot T_H$$

for H_2O_2

and:

$$T_H = \frac{\beta \frac{\pi}{3} r}{65B} = 10 \cdot \frac{500 \text{ W/kg} \cdot 0.023}{5 \cdot 6.7 \cdot 10^{-8} \frac{\text{W}}{\text{m}^2 \cdot \text{K}}}
\approx 900 \text{ K}$$

In practice: According to test publication, $T_H = 1100 \text{ K}$. Not exactly, but not bad.